
Predictors of weight reduction effectiveness of SGLT2 inhibitors in diabetes mellitus type 2 patients FRONTIERS IN ENDOCRINOLOGY **IMPACT FACTOR: 5.2** ارائه دهنده: عليرضا معاضدى

استاد راهنما: دکتر نسیم عبادتی

SGLT2i Mechanism of action

These agents lower the blood glucose by selectively inhibiting this **co-transporter**, which is expressed almost exclusively in the proximal, convoluted tubule in the kidney.

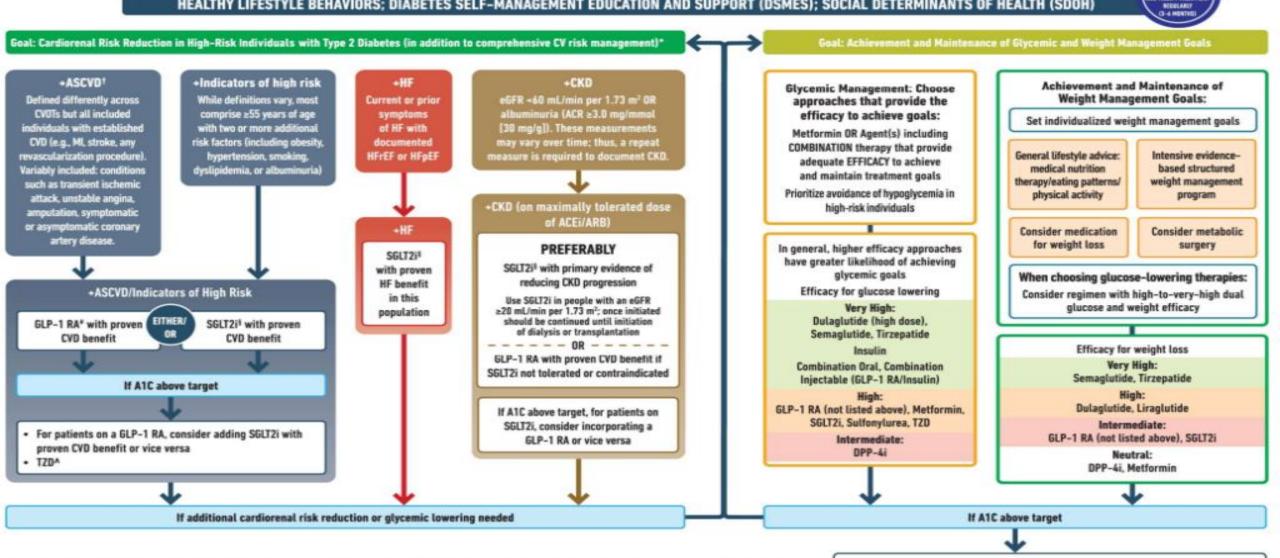
Harrison 2022

> the glucose-lowering effect is **insulin independent**

> The loss of urinary glucose may promote **modest weight reduction**

>3–6 mmHg reduction in systolic blood pressure

urinary and genital mycotic infections are more common in both men and women


Euglycemic DKA may occur during illness

>All SGLT2 inhibitors may reduce **hospitalization for CHF**

have all been shown to reduce progression of diabetic kidney disease

USE OF GLUCOSE-LOWERING MEDICATIONS IN THE MANAGEMENT OF TYPE 2 DIABETES

HEALTHY LIFESTYLE BEHAVIORS: DIABETES SELF-MANAGEMENT EDUCATION AND SUPPORT (DSMES): SOCIAL DETERMINANTS OF HEALTH (SDOH)

* In people with HF. CKD, established CVD or multiple risk factors for CVD, the decision to use a GLP-1 RA or SGLT2i with proven benefit should be independent of background use of methormin; + A strong recommendation is warranted for people with CVD and a weaker recommendation for those with indicators of high CV risk. Moreover, a higher absolute risk reduction and thus lower numbers needed to treat are seen at higher levels of baseline risk and should be factored into the shared decision-making process. See text for details: ^ Low-dose TZD may be better tolerated and similarly effective; § For SGLT2i, CV/ renal outcomes trials demonstrate their efficacy in reducing the risk of composite MACE, CV death, all-cause mortality, MI, HHF, and renal outcomes in individuals with T2D with established/high risk of CVD; # For GLP-1 RA, CV0Ts demonstrate their efficacy in reducing composite MACE, CV death, all-cause mortality, MI, stroke, and renal endpoints in individuals with T2D with established/high risk of CVD.

Identify barriers to goals:

- Consider DSMES referral to support self-efficacy in achievement of goals
- · Consider technology (e.g., diagnostic CGM) to identify therapeutic gaps and tailor therapy

THERAPEUTIC INCIDIA NUMBERS AND NODETT THEATHERT

· Identify and address SDOH that impact achievement of goals

9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2024 000

اشکال رایج دارویی در ایران

اشکال رایج دارویی در ایران

Introduction

Diabesity: The two most essential components of metabolic syndrome are diabetes mellitus type 2 (T2DM) and obesity

weight reduction in GLP-1 receptor agonist and SGLT2i

SGLT2i has been shown to result in a **slight reduction** in body weight compared to placebo. A meta-analysis of 43 randomized controlled trials comparing SGLT2i with placebo has reported that a mean reduction of **1.88 kg** of body weight was observed in SGLT2i users compared to placebo

Potential mechanisms of weight reduction: urinary glucose excretion, initially, fluid loss may play a role, caloric loss, activation of lipolysis. Patients taking SGLT2i have shown highly variable weight loss ranging from 2-4% of initial body weight

weight-lowering effect could result from intricate interactions between non-biological and biological factors

A previous study demonstrated that multiple factors can predict meaningful weight reduction in T2DM patients using SGLT2i, including: regular exercise, normal renal function, and concurrent use of metformin

>That study included only one type of SGLT2i, dapagliflozin

Materials and methods

retrospective cohort

Inclusion criteria: adults aged 18 years and older with T2DM who were first prescribed SGLT2i either as monotherapy or add-on therapy at the Internal Medicine Department, Faculty of Medicine, Chiang Mai University, between 1 January 2018 and 31 December 2022.

INCLUSION CRITERIA

Exclusion criteria

- type 1 diabetes mellitus
- history of GLP1-RA use
- history of herb use
- history of steroid treatment
- -duration of follow-up <1 year</pre>
- Pregnancy
- chronic kidney disease (CKD)
- Dialysis (peritoneal or hemodialysis)
- bariatric surgery
- •other weight-reduction agents

 Uncomplete physical examination and laboratory investigation data

Follow-up time was defined as the interval from the starting date of SGLT2i treatment to the points of interest at 6 and 12 months. Significant weight reduction was defined as >3% weight loss in 12 months.

Data obtained from medical records included:

>demographic information(age and gender)

>medical history including comorbidities(HTN, ASCVD, CKD, NAFLD, etc)

History of alcohol consumption and tobacco use

>current medication usage(diabetes drugs, lipid-lowering agents, and antihypertensive agents)

Anthropometric measurements(weight, height, and body mass index (BMI))

>systolic and diastolic blood pressure

Biochemical parameters (HbA1c, FBS, total cholesterol, LDL, HDL, Cr, eGFR)

Anthropometric measurements and biochemical parameters were determined at baseline and 6 and 12 months

Statistical analysis

For normally distributed continuous variables(means & SD)

For non-normally distributed continuous variables(medians & IQR)

>univariable analysis for normally distributed variables: independent
t-test

univariable analysis for non-normally distributed variables: Wilcoxon rank-sum test

➤analyses of the predictive factors for >3% weight loss at one year: multivariable logistic regression(reported as OR with 95% CI)

>sample size: at least 250 patients needed to be included to identify the predictors

Results

- A total of **289** T2DM patients were included in the study
- categorized into two groups(significant & no significant weight loss)
- The majority of the cohort were males (n=166, 57.6%)
- The median age was 65 years (IQR 59-71)
- The median BMI was 25.8 kg/m2 (IQR 23.4-29)
- The median HbA1c was **7.5**% (IQR 6.8-8.5)
- The median weight reduction at 1 year was -2 (IQR -4,0) kg
- Of the participants, 45.6% (n=132) achieved a significant weight loss, while 54.4% (n=157) had no significant weight loss

Median weight reduction at one year in the significant weight loss group was -4 kg (IQR -6,-3)

in the non-significant weight loss group, the weight reduction was **0** kg (IQR -1, 1.2)

The difference in weight loss between the two groups was statistically significant

Except for body weight change at 12 months, there were no statistically significant differences between the two groups.

(1010, 105)			
Body weight at 6 months (IQR, kg)	64 (57-74)	67 (60-78)	0.193
Body weight at 12 months (IQR, kg)	66.8 (58.5-74.8)	68 (44.7-79.7)	0.242
Body weight changes at 12 months (IQR, kg)	-4 (-6,-3)	0 (-1, 1.2)	< 0.001
Systolic blood pressure (IQR, mmHg)	135 (122-144)	133 (124-142)	0.906
Diastolic blood pressure (IQR, mmHg)	74 (67-83)	75 (68-81)	0.416

In multivariable analysis:

age over 70 years was found to be associated with a significantly higher likelihood of weight loss (OR 3.26, 95% CI 1.39-7.6, p=0.006)

Baseline BMI >25 kg/m2 also showed a small but statistically significant association with weight loss (OR 1.02, 95% CI 1.01-1.05, p=0.049)

The use of sulfonylureas was statistically significantly associated with increased weight loss (OR 2.41, 95% CI 1.15-5.09, p=0.020)

hydrochlorothiazide (HCTZ) use was associated with **decreased odds** of weight loss (OR 0.35, 95% Cl 0.13-0.96, p=0.043)

Predictor OR (95% (OR	p-	Metformin use	1.41 (0.53-3.71)	0.480
	(95% CI)	value	Sulfonylureas use	2.41 (1.15-5.09)	0.020
Age >70 years	3.26 (1.39-7.6)	0.006	Pioglitazone use	0.66 (0.26-1.67)	0.391
			DPP-4 inhibitor use	0.65 (0.31-1.36)	0.262
Male	0.81 (0.35-1.90)	0.642	Insulin use	0.99 (0.40-2.42)	0.988
Baseline BMI >25 kg/m ²	1.02 (1.01-1.05)	.05) 0.049	HCTZ use	0.35 (0.13-0.96)	0.043
0			Calcium channel blocker use	0.78 (0.40-1.54)	0.479
Baseline systolic blood pressure	0.99 (0.96-1.01)	0.429	Baseline HbA1c	1.03 (0.74-1.42)	0.855
Baseline diastolic blood pressure	0.98 (0.95-1.01)	0.632	HbA1c changes	0.94 (0.71-1.25)	0.700
			eGFR	0.44 (0.16-1.22)	0.116
NAFLD	FLD 0.55 (0.11-2.63)	0.463	Patients with creatinine rising >30%	1.08 (0.51-2.29)	0.827
ASCVD	1.22 (0.50-2.95)	0.650	after SGLT2i		

Discussion

there are multiple clinical and biochemical indicators that could potentially assist in predicting significant weight loss in patients with T2DM following treatment with SGLT2i:

```
age over 70 years,
```

```
baseline BMI >25 kg/m2,
```

```
sulfonylureas users,
```

```
and HCTZ non-users
```

In congruence with previous studies, approximately half (45.6%) the T2DM patients in the present study versus 61% in a previous study had significant weight loss after using SGLT2i.

Unlike in this present study, having normal renal function and using metformin had no significant association with weight reduction.

The previous study also reported **no significant association** between significant weight reduction and older age, baseline BMI >25 kg/m2, sulfonylureas use, or non-use of HCTZ.

age over 70 years

Physiologically, adults aged over 70 years old had a loss of fat-free mass, especially skeletal muscle, and an **increase in fat mass**. As mentioned earlier, the **late phase** of weight loss from SGLT2i can be explained by **fat loss**.

elderly patients tended to have **higher adherence** to diabetes medications than younger patients.(cannot be confirmed, as data regarding medication adherence **was not reported** in this cohort)

baseline BMI >25 kg/m2

Based on WHO criteria for Asian individuals, a BMI over 25 kg/m2 was defined as **obesity**.

more enthusiasm for lifestyle modification

The p-value of this factor showed a **marginally** significant association with meaningful weight loss

use of sulfonylureas

weight gain of approximately 2.0-2.3 kg(two mechanisms: 1) **hypoglycemia** ,2) **increased insulin** level which leads to lipogenesis)

this **excess fat deposition** could be reduced by the effects of SGLT2i, which can promote fat loss in the **latter phase** of the weight reduction mechanism.

use of HCTZ

HCTZ has been reported to be associated with insulin resistance and an increase in visceral adipose tissue

this population tended to have a high incidence of **metabolic syndrome and obesity**, which may have resulted in resistance to SGLT2i-induced weight loss.

Strengths of study

it investigated **various types** of SGLT2i, making the results of the present study **more generalizable**.

used multivariable **logistic** regression analysis incorporating **multiple confounders** for adjustment, which made the results more interpretable and more **accurate**.

The results highlight the potential role of **individual characteristics** and **concurrent medication used** in determining weight loss outcomes with SGLT2i therapy.

limitations

retrospective study design and the reliance on patient records.

not be applicable to all patient populations due to the **specific inclusion criteria** of the study and the fact that the study population was primarily comprised of **Asians**.

Body composition was not measured in this cohort, so the underpinning mechanism of weight reduction could not be fully elucidated.

Conclusion

This study identified multiple potential predictors of significant weight loss following SGLT2i therapy in T2DM patients, including advanced age, higher BMI, sulfonylureas use, and HCTZ non-use. These findings could help optimize the use of SGLT2i and provide an **efficient** treatment strategy for using SGLT2i for patients with T2DM. Further studies are needed to confirm these findings and elucidate the underlying mechanisms.